
 

Kanit Wongsuphasawat (Research Statement)  
Visualization is a critical tool for data science. Analysts use plots to explore and understand distributions and relationships in their 
data. Machine learning developers also use diagrams to understand and communicate complex model structures. Yet visualization 
authoring requires a lot of manual efforts and non-trivial decisions, demanding that the authors have a lot of expertise, discipline, 
and time in order to effectively visualize and analyze the data.  

My research in human-computer interaction focuses on the design of tools that augment visualization authoring with automated 
design and recommendation.  By automating repetitive parts of authoring while preserving user control to guide the automation, 
people can leverage their domain knowledge and creativity to achieve their goals more effectively with fewer efforts and human 
errors. In my thesis, I have developed new formal languages and systems for chart specification and recommendation, and used 
them to develop graphical interfaces that enable new forms of recommendation-powered visual data exploration [1-4]. I also built a 
tool that combines automatic layout techniques with user interaction to help developers visualize and inspect the structure of 
deep learning models in TensorFlow [5].  These systems have been open sourced and adopted in data science communities. 

Augmenting Exploratory Data Analysis with Visualization Recommendation 
Exploratory analysis of previously unseen data involves both open exploration and question answering. While tools like Tableau and 
ggplot2 support a variety of charts for question answering, they typically require manual chart authoring, involving many decisions 
including choosing data fields, applying data transformations, and designing visual encodings. This manual process can be tedious 
and non-trivial, demanding familiarity with the data domain as well as analysis and design expertise. While analysts should achieve 
systematic data coverage in their exploration, in practice they may overlook important insights, such as potentially confounding 
factors and data quality issues, or prematurely fixate on specific questions due to the lack of expertise or discipline.  

My thesis explores how to design interactive systems that complement manual chart authoring with chart recommendation to 
facilitate rapid and systematic exploration of tabular data. I have developed new languages and systems for chart specification 
and recommendation [1-4], and used them to build graphical interfaces that enable new forms of recommendation-powered visual 
data exploration [1,2] (Figure 1). The Vega-Lite visualization grammar [1,3] provides a 
representation for specifying and reasoning about charts. The CompassQL query 
language and recommender engine [2,4] provide a generalizable framework for chart 
recommendation via queries over the space of visualizations. With Vega-Lite and 
CompassQL as the foundations for chart recommendation, I used the iterative design 
process to develop and study new recommendation-powered graphical interfaces. 
Voyager [1] enables data exploration via browsing of recommended charts. Our user 
study, which compared Voyager with a chart authoring tool, indicated the 
complementary benefits of manual authoring and recommendation browsing. Inspired 
by the study result, Voyager 2 [2] blends manual and automated chart authoring to 
facilitate both question answering and exploration in a single tool. Besides Voyager, 
Vega-Lite and CompassQL have also enabled other applications and research projects.  

Vega-Lite: a Grammar of Interactive Visualizations  
Building a chart recommendation engine requires a representation for 
enumerating and evaluating candidate charts. To enable a broad range 
of recommendation, the representation must be expressive, supporting 
a variety of charts.  To facilitate reasoning in the recommender engine, 
the representation must also be concise, requiring a small number of 
properties to be determined by the engine. 

To provide a representation that satisfies these criteria, we developed 
Vega-Lite [1,3], a high-level visualization grammar built on top of Vega 
[6]. As a grammar, Vega-Lite provides primitive building blocks for 
composing an expressive range of charts. A single-view specification in 

Vega-Lite (Figure 2) describes data sources, mark, and encoding 

mappings from (optionally transformed) data fields to visual channels such as x, y, or color. Inspired by existing grammars for 

visual analysis like ggplot2 and Tableau’s VizQL, Vega-Lite provides a concise syntax by automatically generating low-level chart 
components such as scales and guides, and allows users to customize these components by overriding their default properties. 
With a concise JSON syntax, Vega-Lite enables both rapid manual authoring and programmatic recommendation of charts.  

Beyond existing grammars, my colleagues and I have extended Vega-Lite to support interactive, multi-view graphics [3]. A novel 
view algebra enables hierarchical composition of layered and multi-view plots via operators including facet, layer, concatenation, 
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Figure 1: The Vega-Lite grammar and 
CompassQL query language enable new 
recommendation-powered visualization 
tools including Voyager  and Voyager 2. 

{
  "data": {"url": "flights.json"},
  "mark": "bar",
  "encoding": {
    "x": {
      "bin": true, 
      "field": "distance", 
      "type": "quantitative"
    },
    "y": {
      "aggregate": "count", 
      "type": "quantitative"
    }
  }
}

Figure 2: A histogram in Vega-Lite: bars that map a binned 
field and aggregated count to their position and length. 
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and repeat. Interactions can be defined by specifying and applying selections, an 
abstraction that defines input event processing, points of interest, and a predicate 
function for inclusion testing.  With these building blocks, Vega-Lite enables 
concise specification of interactive multi-view plots. For example, coordinated 
histograms in Figure 4 can be defined within a few dozen lines of JSON, compared 
to at least a few hundred lines of code in other libraries like Vega [6] and D3. 

In addition to supporting chart recommendation in my thesis, Vega-Lite has 
served as a platform for developing other applications and research projects 
(Figure 3). We used Vega-Lite to develop an automatic model to reason about 
visualization similarity and sequencing [7]. Our colleagues at Stanford [11], Georgia 
Tech, and Princeton are using Vega-Lite to build natural language interfaces for data visualization and analysis. As a declarative 
format, Vega-Lite also enables sharing across applications and platforms. JupyterLab, the latest version of the Jupyter/iPython 
notebook, supports Vega-Lite and Vega as its official plotting formats. Vega-Lite is also wrapped as native visualization libraries in 
many languages.  For example, our colleagues have built a Python wrapper called Altair and noted that “Vega-lite (and Vega) are 
perhaps the best existing candidate for a principled lingua franca of visualization”. With an easy-to-use yet flexible design, Vega-
Lite is also used for teaching in a book for practitioners [13] and in classes at leading institutions including Stanford, CMU, and the 
Universities of Maryland and Washington. Vega-Lite has over 1,000 GitHub stars and 30,000 downloads per month on NPM.   

 

CompassQL: Visualization Query Language & Recommender Engine 
Prior projects on chart recommendation typically develop customized engines to 
suggest chart designs for a given data or suggest potentially interesting data for a 
fixed chart template, without giving users fine-grained control over the 
suggestions. To provide a more general-purposed framework for recommendation 
[2,4], I developed the CompassQL query language and recommender engine, 
which facilitate chart recommendation via queries over the space of visualizations. 

CompassQL represents a chart recommendation query in the form of a partial 
chart specification, which omits some properties to be suggested by the engine. A 
specification in a CompassQL query (Figure 5) has a structure like a single-view 
specification in Vega-Lite, but can contain wildcards to indicate properties that 
should be suggested by the engine. To organize outputs, a query may contain 
recommendation directives for grouping redundant plots (such as plots with 
similar data fields and transformations) and choosing or ordering plots (e.g., by an 

empirically-derived perceptual effectiveness ranking of visual encodings).  

CompassQL recommends charts for a given query by reasoning about candidate chart specifications. To enumerate candidate 
specifications, CompassQL replaces each wildcard in the query with concrete values that satisfy both user-defined constraints in 
the query and the engine’s built-in constraints, which applies visualization design knowledge to prune misleading charts.  The 
engine then groups and ranks candidate charts based on the recommendation directives.  

To assess if CompassQL enables more general-purposed chart recommendation, I have demonstrated that CompassQL queries 
can express a variety of existing recommendation approaches [4], including techniques used within Tableau [9] and recent work 
from the database community [12]. More importantly, I have used CompassQL as a framework to develop novel recommendation-
powered interfaces for visual data exploration, including the Voyager visualization browser [1] and Voyager 2 [2], which blends chart 
specification and recommendation in a single tool. CompassQL was also used to generate training data for an analysis pipeline that 
reverse-engineers visual encodings from bitmap chart images [8]. 
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Figure 4: A column-based repetition of a layered histogram with a selection produces coordinated histograms. For each subplot, the lower 
layer (blue) shows the full dataset with an interval selection on x-axis while the upper layer (gold) shows the data in the selected range.  
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{
  "spec": {
    "data": {"url": "cars.json"},
    "mark": "?",
    "encodings": [{
      "channel": "x",       
      "field": "Horsepower",       
      "type": "quantitative"
    },{
      "channel": "y",       
      "field": "MilesPerGallon", 
      "type": "quantitative"
    }]
  },
  "chooseBy": "effectiveness"
} …

Figure 5: A CompassQL query for suggesting 
mark type for the shelf interface in Figure 7. As 
the mark is a wildcard, CompassQL enumerates 
marks, applies built-in constraints to prune 
misleading marks, and chooses the best mark 
based on a perceptual effectiveness ranking. 

Figure 3. Vega-Lite has served as a platform for 
developing other applications and research 
projects. Highlights are my thesis contributions. 
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Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recommendations 
We used Vega-Lite and CompassQL as the foundations to develop new 
recommendation-powered graphical interfaces for exploratory analysis. 
As manual chart authoring can impede rapid and systematic exploration,  
we developed Voyager [1], a system that facilitates data exploration with 
interactive navigation of recommended charts (Figure 6).  

To facilitate rapid and systematic exploration, Voyager embeds analysis 
and visualization design practices to guide exploration while preserving 
user control. To encourage analysts to thoroughly examine the data and 
avoid premature fixation, Voyager shows univariate summaries of all 
fields upon loading a new dataset.  As exploration proceeds, users can 
focus on specific aspects of the data and steer the recommendations by 
selecting data fields and transformations (Figure 6, left). To promote 
broad exploration, Voyager prioritizes showing data variation (different 
fields and transformations) over design variation (different visual 
encodings of the same data). Besides charts showing selected fields 
(Figure 6, top right), Voyager also suggests charts with one extra field to 
help analysts consider other potentially relevant fields (Figure 6, lower 
right). For each suggestion, Voyager applies the perceptual effectiveness 
ranking in CompassQL to pick the best visual encoding. 

We evaluated Voyager with a user study on exploratory analysis of 
previously unseen data. To provide a baseline system, we built PoleStar, a 
chart authoring tool modeled on Tableau. To assess if Voyager helps users 
systematically explore more data, we analyze data field coverage. We 
found that subjects interacted with 1.5 times more unique field sets in 
Voyager. For user ratings (Figure 8), Voyager was preferred for open 
exploration as it gave users “options that [they] wouldn’t have thought 
about”. However, users preferred PoleStar for question answering as they 
could build plots specific to their questions. Users also desired to “start 
exploration with Voyager and switch to PoleStar to dive into questions”. 
This result indicated the value of chart recommendation for open 
exploration, but also called for a unified tool that supports both manual 
authoring and recommendation browsing.  

Voyager 2: Blending Manual and Automated Chart Authoring  
Motivated by the complementary value of manual chart authoring and 
recommendation browsing shown in the Voyager study, we designed 
Voyager 2, a tool that blends manual and automated chart authoring to 
facilitate both open exploration and question answering in one tool.  

With Voyager 2 (Figure 7), users can pivot among multiple interaction 
methods within one system. As in traditional visualization tools like 
PoleStar and Tableau, users can manually create arbitrary views (Figure 
7, top right). Moreover, Voyager 2 presents two new partial view 
specification interfaces. Related views suggest charts based on the 
current specified view, allowing users to browse charts with relevant 
data fields or alternative ways to summarize or encode the data (Figure 
7, lower right). The wildcard interfaces enable analysts to specify a set of 
charts in parallel by varying chart properties, giving them control over 
sets of views aligned with their analysis goals. To transition from 
browsing to follow-on analysis, users can make any suggested views the 
new specified view, and modify the view or browse other relevant views.  

We evaluated Voyager 2 by comparing it with PoleStar. Akin to Voyager, 
Voyager 2 helped users systematically explore more data (2.4 times more 
unique field sets interacted with), and received higher ratings for open 

Figure 6: Voyager facilitates systematic and rapid data 
exploration by presenting recommended charts based on 
analysis and visualization design practices for users to 
browse (right). To focus on specific aspects of the data and 
steer the recommendations, users can select data fields 
and transformation functions (left).  
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Voyager 2 is rated comparably with Polestar.

Figure 8: Task-based subject preference from studies 
comparing Voyager and Voyager 2 with the PoleStar 
specification tool. Voyager 2 is overall favored over 
Voyager and PoleStar for supporting both open 
exploration and focused question answering. 

Figure 7 Voyager 2 blends manual and automated chart 
authoring. Users can use the shelf interfaces (left) to specify 
arbitrary views (top right). From the specified view, Voyager 
2 presents related views, allow users to browse and 
discover relevant data fields and alternative ways to 
summarize or encode the data (lower right). Users can also 
use the wildcard interfaces (in teal) to specify multiple 
charts in parallel by varying certain chart properties. 
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exploration (Figure 8). For question answering, while users preferred Polestar to Voyager, users rated Voyager 2 comparably to 
PoleStar. Despite having more features than PoleStar, users remarked that Voyager 2 was ”easier to use” and “more learner-
friendly”. Overall, Voyager 2 improved upon Voyager and PoleStar in terms of supporting both exploration and question answering.  
In an ongoing work with the Jupyter team, we are integrating Voyager 2 as a JupyterLab plugin, so users can easily explore data in 
Voyager 2 and transition from and to other analysis phases, such as cleaning data and sharing results, within the Jupyter platform.  

Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow 
Besides supporting data exploration, visualization is also a critical tool for understanding machine learning. To help developers 
understand deep learning architecture, I led the development of the TensorFlow graph visualizer [5], a tool that combines 
automatic layout techniques with user interaction to visualize dataflow graphs of TensorFlow models.  

To simplify creation and deployment of deep learning models, Google’s TensorFlow library generates low-level dataflow graphs to 
represent computations in the models. As developers often draw high-level diagrams to build a mental map and communicate 
their model structures, they desire a way to automatically generate diagrams from their code.  However, these graphs are low-level 
and typically contain thousands of nodes. Some of these nodes also have high degrees but are unimportant for understanding 
model structure. As a result, standard graph layout tools produce tangled diagrams (Figure 9, top). 

Combining automatic layout techniques and interactions that give users control, the visualizer enables developers to create legible 
interactive diagrams that match their mental maps. The tool applies hierarchical graph clustering to build a high-level diagram of 
the model (Figure 9-10), akin to what developers typically draw, and enables users to explore its nested structure by expanding 
clusters. To help users create graph clusters that match their mental maps,  our strategy is to let users annotate the source code 
with hierarchical information. To declutter the layout, the tool applies heuristics to extract nodes that developers normally omit 
from their hand-drawn diagrams and allows users to customize the layout by extracting and un-extracting more nodes.  

The graph visualizer has been released as a part of TensorFlow and widely used in the community for debugging and sharing their 
deep learning model structures. Online reviews of deep learning libraries mentioned that the visualization “helps differentiate 
TensorFlow from other libraries” and “is a great step in the right direction”.  Screenshots from the visualizer regularly appear on the 
official and 3rd-party tutorials as well as on StackOverflow questions for explaining models. From internal mailing lists at Google 
and external blogs, we have found that many users repeatedly modified their annotations in the code to make the diagrams match 
their mental map, indicating that the visualizer is indeed valuable for model developers.  

  
Figure 9. TensorFlow Graph Visualizer converts the 
low-level  graph of a linear model (“Hello World” 
example) into a high-level interactive diagrams. 

Figure 10. A convolutional network for classifying images. (Left) An overview shows 
a flow of nodes that are grouped based on user annotations. Unimportant nodes 
are extracted to the side. (Right) Expanding a group shows its nested structure. 

Future Research 
My mission is to help people work with and benefit more from data via visualization and intelligent systems. To make an impact on 
the company’s products as well as internal and open-source tools, I plan to foster collaboration with designers, engineers, product 
managers, and other researchers. Through collaboration, I will identify vital data challenges in the company and address them by 
building and augmenting systems with automatic and interactive techniques.  Here are some research challenges that excite me.  

Improve foundations & design new applications for chart recommendation. My thesis work has contributed foundations for chart 
specification and recommendation, and used them to facilitate data exploration. However, this work is only an initial investigation 
of chart recommendation research. While CompassQL currently only suggests single-view plots, multi-view composition and 
interaction support in Vega-Lite can enable a richer set of recommendations. Layered charts such as box plots can provide more 
statistical information like variability and outliers in addition to the central tendency of a distribution. Suggesting interaction 

(a) (b)
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techniques for different types of plots can facilitate interactive analysis. Besides data exploration, automated chart design can assist 
other tasks. Suggesting annotations to indicate trends may enhance visual communication. Warning about misleading plots and 
proposing alternatives with explanations for why certain designs are better can educate novices and improve visualization literacy.  

To support a richer set of recommendations, we need to study and extend enumeration strategies, design constraints, and 
rankings in CompassQL beyond single-view plots. For example, suggesting multi-view graphics requires enumeration of 
composition structures (e.g., by layering or concatenating views) in addition to enumerating wildcards in a fixed specification 
structure. A critical question is how to provide an intuitive mechanism for users to constrain the space of suggested composition 
structures. Built-in design constraints such as enforcing consistencies of visual encodings between sub-views [10] can also facilitate 
reading of multi-view graphics. Moreover, manually designing features for the perceptual effectiveness ranking may not scale for 
this large combinatorial design space, I plan to explore probabilistic models that learn and improve the rankings based on user 
interactions. Such work will also open up possibilities for personalization and adapting recommendation for different data domains.  

Help people create and understand machine learning systems. Beyond depicting model structures from their source code, I am 
interested in designing tools to support visual authoring, exploration, and analysis of machine learning models. To support these 
tasks, many important questions remain. What is the right abstraction level for building blocks in the model authoring interfaces? 
What are variations of the models that developers expect to vary in their experiments? How might we design interfaces and 
visualizations to help people better explore and evaluate these variations? Besides supporting model creators, I would like to help 
end-users better understand models.  For example, I am interested in designing visualizations to explain why interpretable models 
such as decision trees or regression models make certain recommendations or predictions.  

Design domain-specific visualizations. I am also interested in visualization techniques for domain-specific data.  For example, I 
would like to explore if we can apply our strategy from the TensorFlow graph visualization to extract unimportant nodes for other 
kinds of graphs such as dataflows of interactive visualizations in Vega.  Moreover, I believe there are high-impact opportunities to 
help build visualization tools and techniques for exploring and understanding other domain-specific data including text (e.g., log 
and social interaction data), temporal sequence data (e.g., for funnel analysis), and image data. I am also keen to extend formalism 
for tabular data like Vega-Lite and CompassQL to support specification and recommendation for other domain-specific techniques.  

Interaction design for intelligent systems. I am also intrigued by general design issues for intelligent systems, namely how to help 
end-users benefit from automation while preserving their control and creativity. Some insights from my work on visualization tools 
could be applicable for other domains. A vital design consideration is to find the right balance between automation and user 
control. For trivial decisions such as producing low-level chart components in Vega-Lite, simply automating the process while 
providing a way to override can be sufficient. For more complex activities like data exploration, it is better to let users pick from 
multiple suggestions and provide fine-grained controls over the suggestions like in Voyager 2. Partial specifications of domain-
specific representations like CompassQL queries can facilitate such control over the suggestions. A related consideration is to 
identify parts of the work that need user input. Without user annotation, graph layout techniques in TensorFlow would not produce 
diagrams that match users’ mental maps. Despite generally positive results for Voyager 2, a study participant remarked that “[the 
related views] are so spoiling that I start thinking less.”  Going forward, the bias and complacency due to automation is another 
important issue.  Besides visualization, I am keen to apply these considerations to augmenting systems with automation in 
domains such as statistical modeling and web design. By studying and designing systems in diverse domains, I hope to generalize 

observed design patterns and develop guidelines for building systems that empower people with machine intelligence.   
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